CORSE OUTCOMES

COURSE-I

CBCS/ SEMESTER SYSTEM

B.A./B.Sc. MATHEMATICS (w.e.f. 2020-21 Admitted Batch)

DIFFERENTIAL EQUATIONS

SYLLABUS (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

- 1. Solve linear differential equations
- Convertnonexact homogeneous equations to exact differential equations by using integrating factors.
- 3.Know the methods of finding solutions of differential equations of the firstorder but not of the firstdegree.
- 4. Solvehigher-order linear differential equations, both homogeneous and non homogeneous, with constant coefficients.
- Understand the concept and apply appropriate methods for solving differential equations.

COURSE-II

CBCS/ SEMESTER SYSTEM

(w.e.f. 2020-21 Admitted Batch)

B.A./B.Sc. MATHEMATICS

THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY

Syllabus (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

- 1. get the knowledge of planes.
- 2. basic idea of lines, sphere and cones.
- 3. understand the properties of planes, lines, spheres and cones.
- 4. express the problems geometrically and then to get the solution.

COURSE-V

CBCS/ SEMESTER SYSTEM

(w.e.f. 2018-19Admitted Batch)

B.A./B.Sc. MATHEMATICS

LINEAR ALGEBRA

SYLLABUS (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to:

- understand the concepts of vector spaces, subspaces, basises, dimension and their properties
- understand the concepts of linear transformations and their properties
- 3. apply Cayley- Hamilton theorem to problems for finding the inverse of a matrix and higher

powers of matrices without using routine methods

4. learn the properties of inner product spaces and determine orthogonality in inner product spaces.

COURSE-VI

CBCS/ SEMESTER SYSTEM

(w.e.f. 2018-19Admitted Batch)

B.A./B.Sc. MATHEMATICS

RING THEORY

SYLLABUS (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

- 1. understand the concepts of RINGS, INTERNAL OPERATION, EXTERNAL COMPOSITION
- 2. understand the concepts of Ideals and their properties
- 3. Division Ring concept. Several theorems based on Division ring
- 4. Isomorphism theorems on rings.